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Hemodynamic parameters of PV analysis
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Today we are still using these combined parameters (single pressure-
velocity wire) to compare at 3 years Xience and ABSORB in an attempt to
understand their different impact on physiology

Conventional indices:
« FFR

«  Coronary flow reserve (CFR)

Systole [ Muscular compression of microcirculation
causes backward compression wave

« Hypereamic stenosis resistance (HSR)

«  Hyperaemic microvascular resistance
(HMR)

LV dPidt
Indices derived from pressure-

velocity loop analysis:

« Epicardial conductance (C eIDi) Diastole [ Wvectar ecomgression of mcrociouilion

causes backward decompression (suction) wave

«  Microcirculatory conductance (Ciicro)

Indices derived from wave
intensity analysis:

« Forward compressive waves

- Backward expansion wave LV . dPldt_,

3. Davies Circulation 2012



Wave intensity (x106Wm-2s-1)

Schematic representation of forward wave transmission

through coronary segments with and without a metallic
cage
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Systole  Diastole Reflected Wave dueto  Forward Distal wire

compliance mismatch waves sensor

Proximal

Systole Diastole

Systole Diastole

In coronary segments with a metallic DES the magnitude of travelling waves distal
to the stent is decreased, as a result of energy loss in the generaNon of secondary
reflected waves caused by compliance mismatch .



Part 1:

Future of physiology
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Angiography-derived FFR
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2735 Records identified through
database search

—=| 1173 Duplicate records

W

1592 Records screened

———>| 1332 Records excluded after
assessment of the abstract

4

260 Full articles assessed

246 Excluded

240 No angiography-
derived FFR provided.
5 Lack of 2x2 table.
1 No FFR provided

14 studies included in the meta-
analysis

Collet et al. under review



Angio-derived FFR Bayesian Meta-
Analysis

Forest Plots of Sensitivity and Specificity
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Bayesian Meta-regression
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Conclusion in coronary physiology

 Since more than a quarter of century (1993-2018), we have the
technology (pressure/velocity wire) to analyze in great details the
coronary physiology (epicardial conductance / micro vasculature
resistance).

« However, we have no specific treatments for the microcirculation
disease (e.g. L-arginine).

« The use of the current single pressure velocity wire is cumbersome,
time consuming and costly - will probably remain a research tool.

» "Color coded angiography” with QFR, virtual FFR and FFR, ., etc...
will be embraced by busy operators who want to have at low cost and
swiftly the “physiological justification” of their treatment of the
epicardial vessels.

« When conventional fluoroscopic angiography will be replaced by CT
angiography, FFRCT might become a surrogate of the angio and
pressure derived FFR.
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OVERVIEW

1) Fusion methodology of OCT, grayscale IVUS, VH and angiography
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OVERVIEW

1) Fusion methodology of OCT, grayscale IVUS, VH and anglography
2) High definition IVUS 1
3) OCT

- Ultra high speed (UHS) OCT.

- Hybrid catheter (IVUS and OCT).

- Tissue characterization and 3D.

- Photoacoustic Imaging: The merging of sound and light.
4) Near infrared spectroscopy
- Software for collagen detection.
- Intravascular molecular imaging of plaque biology
- Near infrared auto fluorescence spectroscopy.
- Time resolved fluorescence spectroscopy.
Fluorescence lifetime imaging (Flim)

24



OVERVIEW

e White ar indicatingkt“hiln_rcjap (ﬁowL
S - . | co n)in LAD plaque

& »

-'-.« s BN g . ’ s‘
» -/ da

4) Near infrared spectroscopy
- Software for collagen detection.
- Intravascular molecular imaging of plaque biology
- Near infrared auto fluorescence spectroscopy.
- Time resolved fluorescence spectroscopy.
Fluorescence lifetime imaging (Flim)
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OVERVIEW

 NIRF imaging agents — Translatable

— ProSense VM110: All refs above; EHJ CV imaging 2016 (Calfon)
— Indocyanine Green: Sci Transl Medicine 2011 (Vinegoni, Botnaru);

. JACC CV Imaging 2016 (Verjans, Osborn)
— Fibrin (FTP11): JACC CV Imaging 2012; European HJ 2015 (Hara)

— Oxidized LDL (LO1): Scientific Reports 2016 (Khamis, Haskard)
— Macrophages (CLIO-CyAm7) Circulation CV Imaging 2017 (Stein-Merlob)

4) Near infrared spectroscopy
- Software for collagen detection.
- Intravascular molecular imaging of plaque biology
- Near infrared auto fluorescence spectroscopy.
- Time resolved fluorescence spectroscopy.
Fluorescence lifetime imaging (Flim)
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OVERVIEW

4) Near infrared spectroscopy
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- Time resolved fluorescence spectroscopy.
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OVERVIEW

4) Near infrared spectroscopy
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- Near infrared auto fluorescence spectroscopy.
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OVERVIEW

TRFS relies on the assessment of APl LR
the fluorescence emission decay
time (nsec) of molecules being

excited with pulsed light v Lipids: ~2 ns* up to ~13 ns*
*: LDL *: Cholesteryl linoleate

v’ Collagen (type I): ~ 6 ns

4) Near infrared spectroscopy
- Software for collagen detection.
- Intravascular molecular imaging of plaque biology
- Near infrared auto fluorescence spectroscopy.
- Time resolved fluorescence spectroscopy.
Fluorescence lifetime imaging (Flim)
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OVERVIEW

TRFS relies on the assessment of b
the fluorescence emission decay

time (nsec) of molecules being

excited with pulsed light

Lifetime (nsec)

4) Near infrared spectroscopy 35 5.5

- Software for collagen detection.

- Intravascular molecular imaging of plaque biology

- Near infrared auto fluorescence spectroscopy.

- Time resolved fluorescence spectroscopy.
Fluorescence lifetime imaging (Flim)
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Conclusion-1

* Hybrid dual-probe catheters allow
1) Evaluation of the plague micro-features such as:

cholesterol crystals detected by OCT, inflammation
(provided by NIRF), macrophages, and neovessels by
IVPA), that were unseen by stand-alone IVUS

2) established markers of plague vulnerability such as
plaque burden and lipid component at the same time.

* Vulnerable plague detection by new hybrid imaging
modalities may have an impact on decision-making in
terms of treatment indication and procedural
optimization.

31



Conclusion-2

e Within 5 years, most of the hybrid imaging
techniques now in preclinical phase will be utilized in
the clinical arena.

e Software for online blood simulation is likely to be
developed that will enable ESS and wall stress
calculation.

e Future studies of intravascular imaging devices are
expected to shed light into the mechanisms of
atherosclerotic evolution and precise risk
stratification of vulnerable plaque.
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Coronary flow reserve

Physiological Basis and Long-Term Clinical
Outcome of Discordance Between Fractional Flow Reserve
and Coronary Flow Velocity Reserve in Coronary Stenoses

of Intermediate Severity

Tim P. van de Hoel, MD; Martijn A, van Lavieren, MS¢; Peter Damman, MD, PhD;
Ronak Delewi, MD; Martijn A, Piek; Steven A.J, Chamuleau, MD, PhD;
Michiel Voskuil, MD, PhD; José P.S. Henriques, MD, PhD; Karel T. Koch, MD, PhD;
Robbert J. de Winter, MD, PhD; Jos A.E. Spaan, PhD; Maria Sicbes, PhD; Jan G.P. Tijssen, PhD,
Martijn Meuwissen, MD, PhD; Jan J. Pick, MD, PhD

Cumulative MACE rate (%)

No. at risk:

FFR>0.80 / CFR22.0
FFR>0.80 / CFR<2.0
FFR<0.80 / CFR22.0

04 0.5 0.6 0.7

Fractional flow reserve

Van de Hoef et al, Circ Cardiovast Interv 2014

FFR>0.80 / CFR<2.0

FFR<0.80 / CFR22.0

FFR>0.80 / CFR22.0

1 T T T T T T T Y L § Y
0O 1 2 3 4 5 6 7 8 9 10
Time since procedure (years)

78 75 71 66 57 48

10 3 3 2 2 2
48 44 40 35 31 24




Today we are still using these parameters to compare at 3 years
Xience and Absorb in an attempt to understand their different

impact on physiology

6.0

] Predommant mlcro vascular dlsease
50| ABSORB 3/13 (23.0%)
] Xlence 3/ 15 (23. O%)

CFR

Coronary flow reserve

Concordant
normal

Predominant
focal epicardial
disease

Predominant §
micro-
vascular
disease

Concordant
abnormal

i
£
:
;
§

0.3 04 0.5 0.6 0.7 08 0.9 1.0
Fractional flow reserve

Circ Cardiovasc Interv 203-5‘7:301 -311



Today we are still using these combined parameters (single pressure-

velocity wire) to compare at 3 years Xience and ABSORB in an attempt to
understand their different impact on physiology

Conventional phsiological indices BVS (n=13) EES (n=16)

0.91+0.04 0.91+£0.07 0.902

CFR 2.7+0.8 2.7%+0.8 0.774
HMR 20x0.6 23114 0.535
HSR 0.20+0.10 0.20+0.16 0.956
Epicardial conductance (C,,) 11.52 £ 8.18 5.42 £3.59 0.048
Microcirculatory conductance (Cicro) 1.43+0.49 1.71+£0.71 0.233
Zero flow pressure (Pzf) 266114 36.1+26.8 0.245

« Conventional physiological indices did not identify haemodynamic differences
between BVS- and DES- treated vessels.

« A significantly higher epicardial conductance was found in BVS-treated vessels.
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Hemodynamic parameters of PV analysis
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Hemodynamic parameters of PV analysis
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Coronary flow reserve

Physiological Basis and Long-Term Clinical
Outcome of Discordance Between Fractional Flow Reserve
and Coronary Flow Velocity Reserve in Coronary Stenoses

of Intermediate Severity

Tim P. van de Hoel, MD; Martijn A, van Lavieren, MS¢; Peter Damman, MD, PhD;
Ronak Delewi, MD; Martijn A, Piek; Steven A.J, Chamuleau, MD, PhD;
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Today we are still using these parameters to compare at 3 years
Xience and Absorb in an attempt to understand their different

impact on physiology
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Today we are still using these combined parameters (single pressure-

velocity wire) to compare at 3 years Xience and ABSORB in an attempt to
understand their different impact on physiology

Conventional phsiological indices BVS (n=13) EES (n=16)

0.91+0.04 0.91+£0.07 0.902

CFR 2.7+0.8 2.7%+0.8 0.774
HMR 20x0.6 23114 0.535
HSR 0.20+0.10 0.20+0.16 0.956
Epicardial conductance (C,,) 11.52 £ 8.18 5.42 £3.59 0.048
Microcirculatory conductance (Cicro) 1.43+0.49 1.71+£0.71 0.233
Zero flow pressure (Pzf) 266114 36.1+26.8 0.245

« Conventional physiological indices did not identify haemodynamic differences
between BVS- and DES- treated vessels.

« A significantly higher epicardial conductance was found in BVS-treated vessels.



Today we are still using these combined parameters (single pressure-
velocity wire) to compare at 3 years Xience and ABSORB in an attempt to
understand their different impact on physiology

Conventional indices:
« FFR

«  Coronary flow reserve (CFR)

Systole [ Muscular compression of microcirculation
causes backward compression wave

« Hypereamic stenosis resistance (HSR)

«  Hyperaemic microvascular resistance
(HMR)

LV dPidt
Indices derived from pressure-

velocity loop analysis:

« Epicardial conductance (C eIDi) Diastole [ Wvectar ecomgression of mcrociouilion

causes backward decompression (suction) wave

«  Microcirculatory conductance (Ciicro)

Indices derived from wave
intensity analysis:

« Forward compressive waves

- Backward expansion wave LV . dPldt_,

3. Davies Circulation 2012



Wave intensity (x106Wm-2s-1)

Schematic representation of forward wave transmission

through coronary segments with and without a metallic
cage

Proximal Distal

12.8+4.0
(x10Wm-2s-1)

T

p value =0.035

|

16.3+4.5
(x106Wm-2s-1)

Systole  Diastole Reflected Wave dueto  Forward Distal wire

compliance mismatch waves sensor

Proximal

Systole Diastole

Systole Diastole

In coronary segments with a metallic DES the magnitude of travelling waves distal
to the stent is decreased, as a result of energy loss in the generaNon of secondary
reflected waves caused by compliance mismatch .
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Angiography-derived FFR
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2735 Records identified through
database search
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W
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4

260 Full articles assessed

246 Excluded

240 No angiography-
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5 Lack of 2x2 table.
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14 studies included in the meta-
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Angio-derived FFR Bayesian Meta-
Analysis
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Bayesian Meta-regression

Fubin pasve ke (1190

Sensitivity

A. Method for pressure drop computation

08

06

0.4

0.2

Math.
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B. Software for FFR estimation

Sensitivity
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C. Type of analysis
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1-Specificity

No difference in Diagnostic Performance (AUC) between type of

method for pressure drop computation, Software or online/offline
analysis.
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Conclusion in coronary physiology

 Since more than a quarter of century (1993-2018), we have the
technology (pressure/velocity wire) to analyze in great details the
coronary physiology (epicardial conductance / micro vasculature
resistance).

« However, we have no specific treatments for the microcirculation
disease (e.g. L-arginine).

« The use of the current single pressure velocity wire is cumbersome,
time consuming and costly - will probably remain a research tool.

» "Color coded angiography” with QFR, virtual FFR and FFR, ., etc...
will be embraced by busy operators who want to have at low cost and
swiftly the “physiological justification” of their treatment of the
epicardial vessels.

« When conventional fluoroscopic angiography will be replaced by CT
angiography, FFRCT might become a surrogate of the angio and
pressure derived FFR.
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OVERVIEW

1) Fusion methodology of OCT, grayscale IVUS, VH and angiography
2) High definition IVUS
3) OCT gl L LR I
- Ultra high speed (UHS) OCT. ‘ &3 |
- Hybrid catheter (IVUS and OCT). ,7;
- Tissue characterization and 3D.
- Photoacoustic Imaging: The merging o1
4) Near infrared spectroscopy
- Software for collagen detection.
- Intravascular molecular imaging of plaque biology
- Near infrared auto fluorescence spectroscopy.
- Time resolved fluorescence spectroscopy.
Fluorescence lifetime imaging (Flim)

sound aa]ight. *
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1) Fusion methodology of OCT, grayscale IVUS, VH and angiography
2) High definition IVUS
3) OCT \
- Ultra high speed (UHS) OCT. ' ’
- Hybrid catheter (IVUS and OCT). " Eﬁ--f-**ﬁ
Conventional OCT
- Tissue characterization and 3D. 100rps
- Photoacoustic Imaging: The merging of sound and light.
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4) Near infrared spectroscopy
- Software for collagen detection.
- Intravascular molecular imaging of plaque biology
- Near infrared auto fluorescence spectroscopy.
- Time resolved fluorescence spectroscopy.

Fluorescence lifetime imaging (Flim)
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- Time resolved fluorescence spectroscopy.
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4) Near infrared spectroscopy
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- Time resolved fluorescence spectroscopy.
Fluorescence lifetime imaging (Flim)
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OVERVIEW

1) Fusion methodology of OCT, grayscale IVUS, VH and anglography
2) High definition IVUS 1
3) OCT

- Ultra high speed (UHS) OCT.

- Hybrid catheter (IVUS and OCT).

- Tissue characterization and 3D.

- Photoacoustic Imaging: The merging of sound and light.
4) Near infrared spectroscopy
- Software for collagen detection.
- Intravascular molecular imaging of plaque biology
- Near infrared auto fluorescence spectroscopy.
- Time resolved fluorescence spectroscopy.
Fluorescence lifetime imaging (Flim)
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OVERVIEW
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4) Near infrared spectroscopy
- Software for collagen detection.
- Intravascular molecular imaging of plaque biology
- Near infrared auto fluorescence spectroscopy.
- Time resolved fluorescence spectroscopy.
Fluorescence lifetime imaging (Flim)
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OVERVIEW

 NIRF imaging agents — Translatable

— ProSense VM110: All refs above; EHJ CV imaging 2016 (Calfon)
— Indocyanine Green: Sci Transl Medicine 2011 (Vinegoni, Botnaru);

. JACC CV Imaging 2016 (Verjans, Osborn)
— Fibrin (FTP11): JACC CV Imaging 2012; European HJ 2015 (Hara)

— Oxidized LDL (LO1): Scientific Reports 2016 (Khamis, Haskard)
— Macrophages (CLIO-CyAm7) Circulation CV Imaging 2017 (Stein-Merlob)

4) Near infrared spectroscopy
- Software for collagen detection.
- Intravascular molecular imaging of plaque biology
- Near infrared auto fluorescence spectroscopy.
- Time resolved fluorescence spectroscopy.
Fluorescence lifetime imaging (Flim)
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OVERVIEW

4) Near infrared spectroscopy
- Software for collagen detection.
- Intravascular molecular imaging of plaque biology
- Near infrared auto fluorescence spectroscopy.
- Time resolved fluorescence spectroscopy.
Fluorescence lifetime imaging (Flim)
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OVERVIEW

4) Near infrared spectroscopy
- Software for collagen detection.
- Intravascular molecular imaging of plaque biology
- Near infrared auto fluorescence spectroscopy.
- Time resolved fluorescence spectroscopy.
Fluorescence lifetime imaging (Flim)
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OVERVIEW

TRFS relies on the assessment of APl LR
the fluorescence emission decay
time (nsec) of molecules being

excited with pulsed light v Lipids: ~2 ns* up to ~13 ns*
*: LDL *: Cholesteryl linoleate

v’ Collagen (type I): ~ 6 ns

4) Near infrared spectroscopy
- Software for collagen detection.
- Intravascular molecular imaging of plaque biology
- Near infrared auto fluorescence spectroscopy.
- Time resolved fluorescence spectroscopy.
Fluorescence lifetime imaging (Flim)

67



OVERVIEW

TRFS relies on the assessment of b
the fluorescence emission decay

time (nsec) of molecules being

excited with pulsed light

Lifetime (nsec)

4) Near infrared spectroscopy 35 5.5

- Software for collagen detection.

- Intravascular molecular imaging of plaque biology

- Near infrared auto fluorescence spectroscopy.

- Time resolved fluorescence spectroscopy.
Fluorescence lifetime imaging (Flim)
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Conclusion-1

* Hybrid dual-probe catheters allow
1) Evaluation of the plague micro-features such as:

cholesterol crystals detected by OCT, inflammation
(provided by NIRF), macrophages, and neovessels by
IVPA), that were unseen by stand-alone IVUS

2) established markers of plague vulnerability such as
plaque burden and lipid component at the same time.

* Vulnerable plague detection by new hybrid imaging
modalities may have an impact on decision-making in
terms of treatment indication and procedural
optimization.
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Conclusion-2

e Within 5 years, most of the hybrid imaging
techniques now in preclinical phase will be utilized in
the clinical arena.

e Software for online blood simulation is likely to be
developed that will enable ESS and wall stress
calculation.

e Future studies of intravascular imaging devices are
expected to shed light into the mechanisms of
atherosclerotic evolution and precise risk
stratification of vulnerable plaque.



